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Abstract
We propose a superlattice model to describe superconductivity in layered
materials, such as the borocarbide families with the chemical formulæ RT2B2C
and RTBC, with R being (essentially) a rare earth, and T a transition metal.
We assume a single band in which electrons feel a local attractive interaction
(negative Hubbard-U ) on sites representing the TB layers, while U = 0 on
sites representing the RC layers; the multi-band structure is taken into account
minimally through a band offset ε. The one-dimensional model is studied
numerically through the calculation of the charge gap, the Drude weight, and the
pairing correlation function. A comparison with the available information on
the nature of the electronic ground state (metallic or superconducting) indicates
that the model provides a systematic parametrization of the whole borocarbide
family.

(Some figures in this article are in colour only in the electronic version)

The study of nickel borocarbides (BCs), with the general formula RNi2B2C, has given rise
to a wealth of interesting information [1–4]. Superconductivity has been found for R = Sc,
Y, Ce, Dy, Ho, Er, Tm, Lu, and Th, but not for R = La, Pr, Nd, Sm, Yb, U, Gd, and Tb.
In addition to the ‘high’ critical temperature for some compounds—Tc > 15 K for R = Sc,
Y and Lu—the other aspect which has drawn attention to these materials is the coexistence,
for R = Dy, Ho, Er, and Tm, of superconductivity and magnetic ordering of the 4f localized
moments. Structurally, the BCs are characterized by a stacking of alternating RC sheets and
Ni2B2 layers [3], with both the band structure [5, 6] and the near isotropic resistivity [4] being
consistent with three-dimensional behaviour.

From the microscopic point of view, superconductivity in these materials is mediated by
phonons, as evidenced by specific heat [7] and isotope effect [8] measurements. It would
then appear natural to relate the suppression of superconductivity, as R and the transition
metal (T) are varied, in terms of the BCS parameters, �D, N(EF), and V (respectively, the
Debye temperature, the density of states at the Fermi level, and some measure of the electron–
phonon coupling strength): kBTc = �D exp[−1/N(EF)V ]. Since resistivity measurements
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indicate that V does not vary much with R in RNi2B2C [9], one is left primarily with �D

and N(EF). While �D generally increases as R goes from Lu to La, measurements of the
Sommerfeld coefficient, γ ∝ N(EF), lead to γLu ∼ 2γLa in the Ni series. However, as
the transition metal is varied, this simple parametrization no longer accounts for the trend of
experimental data in an unambiguous way. Indeed, LaPt2B2C is a superconductor (and, for
this Pt series, so are the compounds with R = Pr, Y [4], and, possibly [10], Nd), even though
it has a smaller N(EF) than non-superconducting LaNi2B2C: γ = 5 and 8 mJ mol−1 K−2,
respectively [11]. Another important piece of information is provided by studies of a closely
related phase, RNiBC [3, 12, 13]. The structural difference between RNi2B2C and RNiBC is
the number of RC layers between the Ni2B2 stacks: one in the former and two in the latter.
Since these ‘double-layered’ materials have so far failed to display superconductivity in both
magnetic and non-magnetic systems alike, the layering structure seems to play a crucial role
in the BCs.

Considerable insight should therefore be gained by describing the RT2B2C
phenomenology in terms of zero-temperature transitions between superconducting (SUC) and
normal ground states as R and T are varied. With this in mind, here we propose a model
based on the expectation that superconductivity can only survive the huge 4f local moment
(�10 µB) in, say, DyNi2B2C if pairing of conduction electrons occurs solely in the NiB
layers. Accordingly, we adopt a simplified description of single-band electrons feeling an
attractive interaction only when occupying the same site on a T2B2 layer; electrons on sites
of the RC layers do not interact with each other. Our purpose here is to single out effects
such as chemical composition and layering in the suppression of superconductivity; therefore,
at this stage we will not take into account effects arising from the 4f electrons of R, such as
possible localized magnetic moments and hybridization. The tetragonal structure suggests a
further simplification, namely, to consider a one-dimensional superlattice, an approach which
has been successfully used in interpreting some magnetic properties of the BCs; in doing this,
we still capture the essential features of the interplay between layering along the c-axis, and
attractive electron–electron interactions1. And, finally, we incorporate minimally the presence
of actually different bands by including a band offset between the layers; that is, we allow for
the occurrence of some charge transfer between the layers. As we will see, the model provides
an effective parametrization, through which one is able to systematize the data and predict
which materials are likely to be SUC.

The above picture is realized by a one-dimensional superlattice generalization of the
attractive Hubbard model [14]2,

H =
∑

i,σ

εi niσ − t
∑

i,σ

(c†
iσ ci+1σ + H.c.) +

∑

i

Ui ni↑ni↓, (1)

where the notation is standard, apart from considering position-dependent site and correlation
energy profiles: Ui = −|U | and εi = ε for all LA sites of the attractive (i.e., Ni2B2) ‘layer’,
and Ui = εi = 0 for all L0 sites on the free (RC) layer; the basis with Nb = LA + L0 sites
is repeated throughout the lattice. In view of the borocarbide structures, we will set LA = 1,
and let L0 = 1 or 2 throughout this paper; also, from now on, all energies will be measured in
units of the hopping t .

1 In one dimension, a superconducting state is actually one with quasi-long range order, characterized by a power-law
decay of correlations.
2 The attractive Hubbard model is actually more suitable to describe short-coherence-length superconductors (which
is not the case of the BCs); nonetheless, this real-space representation of pairing makes it an ideal framework to discuss
spatial effects such as layering and disorder, though, admittedly, at the expense of missing out on the comparison with
some specific experimental data.
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Table 1. Criteria to determine the nature of the ground state in the attractive Hubbard superlattice,
from the behaviour of the charge gap, �, and of the Drude weight, D.

Nature of the state � (equation (2)) D (equation (3))

Superconducting �=0 �=0
Metallic 0 �=0
Insulating �=0 0

Superconductivity within this model then arises due to the balance between the formation
of pairs and their coherent hopping controlled by ε; e.g., as ε → ∞, the system approaches
an insulating state, since hopping will be hindered by the high energetic cost of occupying the
attractive sites. Also, in the present context we anticipate that the strength of the attraction,
|U |, tracks the Debye temperature, �D, in the sense that for a given transition metal it increases
as the ionic radius of R increases [4].

The ground state of the Hamiltonian (1) has been obtained through Lanczos
diagonalization [15] on lattices with Ns sites and Ne electrons (thus the density ρ = Ne/Ns);
we take closed chains with a phase change (or magnetic flux through the ring), φ, imposed on
the hopping term between sites Ns and 1, in order to select closed-shell configurations [16], as
well as to calculate the Drude weight (see below). Depending on the SL configuration (L0 = 1
or 2), and filling factor, we were able to reach lattices as large as Ns = 24; note, however, that
not all configurations fit into all sizes and occupations considered.

For a given SL configuration, the nature of the ground state is determined through the
calculation of the following quantities.

(1) The charge gap, which probes single-particle excitations, defined as

� = E(Ns, Ne + 1) + E(Ns, Ne − 1) − 2E(Ns, Ne), (2)

where E(Ns, N ′) is the ground state energy for a chain with Ns sites and N ′ electrons.
(2) The Drude weight, which measures the strength of the DC conductivity peak, defined as

D = Ns

2

∂2 E0

∂φ2

∣∣∣∣
φ=φ0

, (3)

where, for a given SL configuration, E0 is the ground state energy for a system with Ne

electrons and Ns sites; φ0 is the phase value which minimizes E0.

For both � and D we obtain a series of values for different system sizes and extrapolate towards
Ns → ∞. A vanishing limit of � is associated with a metallic state, whereas a non-zero value
is associated with either an insulating state or with a SUC state; indeed, in the case of the
homogeneous (i.e., non-layered) attractive Hubbard model, it has been exactly shown that the
single-particle excitation spectrum has a gap for arbitrary densities [17]. A vanishing limit
of D is associated with an insulating state, whereas a non-zero value is associated with a
conducting state, i.e., metallic or superconductor. Therefore, the nature of the ground state is
determined by the limiting behaviour of both � and D, as summarized in table 1.

(3) The s-wave singlet (SS) pairing correlation function, defined as

C(i ; 	) = 1
2 〈ci+	↓ci+	↑c†

i↑c†
i↓ + h.c.〉, (4)

which is used as a consistency check for a SUC ground state. Typically, C(i ; 	) should
display a much slower spatial decay in the SUC state than in the normal state.
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Figure 1. Extrapolated Drude weight (left vertical axis) and charge gap (right vertical axis) as
functions of the site energy for the Hubbard superlattice with L0 = LA = 1, U = −4, and an
electronic density ρ = 5/3. The vertical dashed line separates the metallic (M) and SUC (S)
phases.

Our results are presented by first fixing a value of U = −4 (in the intermediate coupling
regime), and comparing the data for different values of ε and of the electronic density; we
then let U vary. In figure 1 we show the extrapolated Drude weight and charge gap for a SL
with L0 = LA = 1, and electronic density ρ = 5/3. According to table 1, a phase transition
between a metal (M) and a superconductor (S) takes place at εc � 2. As expected, figure 1
shows that as ε is further increased, the system approaches an insulating state. Since the
insulating (I) state is not relevant to the borocarbides (they are metallic in their normal state),
we will not discuss the S–I transition any further.

Still for U = −4, we calculated the Drude weight and the charge gap for other band
fillings, both for L0 = 1 (ρ = 1, 3/2, 4/3, 7/4 and 11/6), and for L0 = 2 (ρ = 4/3, 5/3, and
11/6); the analysis yields the critical boundaries εc(ρ) depicted in figure 2. Several aspects
of the phase diagrams are worth stressing. First, a non-zero site energy is needed to stabilize
the SUC state. Indeed, given the local (i.e., on-site) character of the attraction, the presence
of one or two free sites in between attractive ones would normally (i.e., for ε = 0) suppress
coherence between pairs. A repulsive site energy on the attractive sites then has the effect
of spreading the pair wavefunction out to neighbouring sites, increasing their overlap: pair
coherence is thus recovered. Secondly, a ground state is only stable above a critical density,
ρc, the value of which can be obtained from a strong coupling (i.e., ε � |U | � 1) analysis:
as one fills up an empty lattice, electrons are first accommodated on the free sites, so their
interaction is only effective when the attractive sites start being occupied, i.e., for densities
above ρc = 2L0/(L0 + LA). Thirdly, at ρc the Drude weight (charge gap) seems to vanish (to
be finite) for all ε, except at εc, where it is non-zero (zero); at εc the system is particle–hole
symmetric and charge is evenly distributed throughout the lattice [18].

We now illustrate the analysis of the pairing correlation function. For a clearer comparison
of the different rates of decay, in figure 3 we eliminate oscillations due to the SL structure
by plotting the correlations at every other site; also, we normalize the functions such that
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Figure 2. Phase diagram for fixed U = −4, and for a free layer with (a) one site and (b) two sites.
Data points for εc(ρ), and associated error bars, come from Gaussian fits to ∂2�/∂ε2. S, M, and I
stand for SUC, metallic, and insulating phases, respectively. Full curves are guides to the eye, and
vertical dashed lines locate the insulating behaviour at ρc and ε �= εc.

Figure 3. Log–log plot of the spatial decay of the pairing correlation function, normalized at
	 = 2, for a 24-site lattice and ρ = 11/6: dashed, dotted, and chain curves represent data for
homogeneous systems with Uh = −4, 0, and 4, respectively; for an SL with L0 = 1 and U = −4,
the circles and squares are data for ε = 0 and 4, respectively.

the correlation between an attractive site and its first attractive neighbour is set to one; i.e.,
C(i, 	 = 2) = 1, with i chosen to be an attractive site. Let us first consider a homogeneous
lattice with Ns = 24 and ρ = 11/6. When Uh = −4 the system is known to be SUC,
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Figure 4. Constant-density sections of the phase diagram (ε, |U |, ρ), for the superlattice with
L0 = 1 and (a) ρ = 5/3, and (b) ρ = 3/2. The full curves guide the eyes through the
boundary between the SUC and metallic phases. The chemical symbols correspond to R in RT2B2C
compounds; see the text.

and, accordingly, the correlation function decays about ten times slower than those for the
corresponding non-superconducting cases,free (Uh = 0), and repulsive (Uh = 4). Considering
now the case of an L0 = 1 superlattice, also with Ns = 24, ρ = 11/6, and U = −4 we see
that for ε = 4, the correlations decay exactly as in the corresponding homogeneous system,
whereas for ε = 0 the rate of decay follows more closely that of the free system. This confirms
the prediction from the analysis of � and D, which places the former on the SUC side of the
diagram and the latter on the metallic side (see figure 2).

The above procedures are repeated to determine the behaviour with U for fixed densities.
The resulting phase diagrams, εc(U), for L0 = 1 are shown in figure 4 for ρ = 5/3 and 3/2.
For |U | � 2, the site energy needed to stabilize the SUC phase increases with |U |, due to
the spreading effect mentioned earlier. As |U | → 0, a sharp rise of εc is expected, since one
should have a metallic state for all ε finite when U = 0. For L0 = 2, the M–S boundary
is qualitatively similar, but the S–I boundary is more strongly affected by the presence of a
second free layer, manifested by a shift to much lower values of ε.

A qualitative connection with experiments on borocarbides RT2B2C can now be
established, based on the association of |U | and ε with measurable parameters such as the
Debye temperature and the band offset. Since �D sets the scale of the BCS zero temperature
gap, a reasonable starting point is to order the Rs according to their Debye temperatures;
these, in turn, track their ionic radii. Then, in figure 4(a) we first place the whole RNi2B2C
series in such a way that the S–M boundary lies between Dy and Tb; this pins R to positions
on the horizontal axis3. Interestingly, this parametrization subsumes the roles of N(EF), the
electron–phonon interaction and of �D, resolving the puzzling fact that LaNi2B2C is not SUC,
in spite of the relatively large N(EF) and �D.

3 (a) This is a qualitative ‘fitting’ to data, and no quantitative prediction for U or ε should be inferred. (b) There is
certainly some arbitrariness in this choice, since magnetic ordering should also influence the location of the boundary.
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As one changes the transition metal (keeping R fixed), by going down a T-column in the
periodic table, the electronic density in the valence orbitals does not change. Therefore, given
our model parameters, one expects the band offset, ε, to be the one most strongly affected by
this change, since it is related to the energy of the atomic levels. Data taken from atomic energy
calculations (see, for example, [19]), indicate that the energy of the higher level increases as
one goes from Ni to Pd to Pt, as well as from Co to Rh to Ir. Accordingly, in figure 4(a) the
horizontal line representing the T = Pt series should be placed above the one for Ni,and in such
a way that La lies within the SUC phase. This resolves the second puzzle of the borocarbides,
the appearance of superconductivity as T is changed: as one moves down a column of the
VIIIA group, the range of Rs leading to superconductivity widens. One can therefore predict
that if a chemically stable phase of, say SmPt2B2C, is grown, it should be SUC. The Pd series
suffers from a similar scarcity of data due to chemical instabilities: apart from SUC YPd2B2C,
only compounds with La and Pr have been grown so far, which are not SUC. According to the
phase diagram, this was already expected, since the horizontal line representing the Pd series
should lie in between those for Ni and Pt.

We now fix R and move horizontally on the periodic table. While the full effects of
the change from, say, Ni to Co should only be captured within a multi-band treatment of
the transition metals, one expects that the most evident feature is a decrease in band filling,
possibly accompanied by a renormalization of ε. Thus, we place the borocarbides with Co,
Rh and Ir in the section of the phase diagram corresponding to a smaller ρ, as in figure 4(b).
Since all members of the T = Co series have so far failed to display superconductivity, they
should be represented by a horizontal line lying entirely in the metallic phase; see figure 4(b).
Many compounds in the Rh series (εRh > εCo) have been grown, also without SUC members;
this series is therefore represented by a line just above that for Co. The phase diagram of
figure 4(b) predicts that superconductivity should be more likely for the Ir series (εIr > εRh),
but this series is even more severely plagued by chemical instabilities than the Pd and Pt ones,
and the only compound grown so far is the non-superconducting LaIr2B2C. For completeness,
one should mention that the above reasoning indicates that SUC YRu2B2C should be placed
in a diagram corresponding to ρ < 3/2. Finally, since the double layered materials seem to
be non-superconducting, they should all lie below the εc line in the corresponding L0 = 2
diagram.

In summary, we have proposed a superlattice model to describe SUC layered materials.
The model is parametrized in terms of band offset ε, on-site attraction U , electron density ρ,
and number of free layers L0. The numerical analysis of the one-dimensional case (at zero
temperature and without local moments) established that superconductivity is possible only
above a critical density ρc(L0) and for ε > εc(ρ, U). The model captures the essential physics
of superconductivity in the borocarbides family, as evidenced by the available experimental
information (regarding the nature of the ground state (i.e., metallic or SUC)) being consistently
accommodated in projections of the phase diagram. Consequently, one is able to predict
which compounds should become superconductors, once the barriers of chemical instability
are broken. The interplay with magnetic ordering is currently being investigated through the
addition of a Kondo-like term, which couples the conduction electrons to the local moments.
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